
AFFDL-TR-76-36
VOLUME I ,JD"/ 05Z /,

DEVELOPMENT OF RELIABILITY-BASED AIRCRAFT SAFETY
CRITERIA: AN IMPACT ANALYSIS
VOLUME I
MODERN ANALYSIS, INCORPORATED

APRIL 1976

TECHNICAL REPORT AFFDL-TR-76-36, VOLUME I
FINAL REPORT FOR PERIOD APRIL 1975 - APRIL 1976

Approved for public release; distribution unlimited

AIR FORCE FLIGHT DYNAMICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433



NOTICE

When Government drawings, specifications, or other
data are used for any purpose other than in connection with a
definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the Government may
have formulated, furnished, or in any way supplied the said
drawings, specifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the
holder or any other person or corporation, or conveying any
rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office
(01) and is releasable to the National Technical Information
Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved
for publication.

ROBERT L. NEULIEB ROBERT M. BADER, Chief,
Project Engineer Structural Integrity Br

Structures Division

?FO THE COMMANDER,

OWARD L. FARMER, Colonel, USAF
Chief, Structural Mechanics Division

Copies of this report should not be returned unless
return is required by security considerations, contractual
obligations, or notice on a specific document.

AIR FORCE - 29 OCTOBER 76 - 300



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

AFFDL-TR-76-36, Volume I

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

DEVELOPMENT OF RELIABILITY-BASED AIRCRAF Final Report
April. 175-April,176 -

SAFETY CRITERIA: AN IMPACT ANALYSIS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

F33615--75-C-3066
Masanobu Shinozuka

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

AREA & WORK UNIT NUMBERS

Modern Analysis Inc.
229 Oak Street 13670123

Ridgewood, N. J. 071450
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Flight Dynamics Laboratory April 1976
Air Force Systems Command 13. NUMBER OF PAGES

Wright-Patterson Air Force Base, ObhirhthL 125
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified
15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if differeni from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Safety, Reliability, Durability, Damage Tolerant Design, Fail Safe

Design, Random Loading, Rise and Fall of Random Processes, Crack

Propagation, Fracture Mechanics, Proof Load Testing, Full-Scale

Testing, Inspections, NDI Techniques.

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

The random stress processes, composite Gaussian or single Gaussian, are const-

ructed on the basis of exceedance curves for different aircraft under various

flight conditions. The fatigue crack propagations under such stress processes

are estimated with the aid of fracture mechanics method. The crack propagation

rate under random loading is assumed to be proportional to the expected value

of a power of the range of stress intensity factor which is in turn proportional

to the expected value of the same power of the rise and fall of the stress

DD 1JAN73 1473 EDITION OF I NOV 6
5 

IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

process involved. The residual strength is evaluated as a function of crack
size either under the assumption of slow crack growth design or under the
assumption of fail safe design. Two different models as to the basic mecha-
nical nature of the crack are used for the analysis and their interrelation-
ships are discussed. One of these is the crack initiation model in which
a crack of certain size is assumed to initiate at '"randomly distributed
time" to and then propagate in accordance with the propagation law of frac-
ture machanics. The other is the pre-existing crack model which assumes
the initial existence of "a crack of random size" that propagates immediately
upon application of the stress process. With the aid of the random process
theory, the failure rate is evaluated as the expected rate of upcrossing
of the residual strength by the stress process. The probability of aircraft
failure is obtained from the failure rate taking into consideration the
effect of inspection procedures and proof loads. The latter, however, is
considered only in conjunction with pre-existing crack model. The signifi-
cance of full-scale testing is also reviewed from the view point of relia-
bility implementation and demonstration. Numerical examples are worked out
to illustrate the numerical significance of various analytical models and
to indicate the sensitivity of the probability of failure to the parameters
involved in the models.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)



FOREWORD

The research work reported herein was conducted at

Modern Analysis Inc., Ridgewood, New Jersey, for Air Force

Flight Dynamics Laboratory, Air Force Systems Command, Wright-

Patterson Air Force Base, Ohio, under constract F33615-75-C-3066,

project 1367, task number 01, with Dr. R. L. Neulieb (AFFDL/FBE)

acting as project engineer.

The research was performed by Dr. M. Shinozuka of Modern

Analysis Inc. as principal investigator with Drs. A. M. Freu-

denthal of George Washington University, R. Vaicaitis of Columbia

University and J. T. P. Yao of Purdue University providing

technical assistance. The computer programs were developed by

Mr. T. Hisada and Mr. Peter Wai, both of Columbia University.

Work began April 1975 and was completed April 1976. The final

report in two volumes was submitted on April 30, 1976.

iii



TABLE OF CONTENTS

Section Page

I INTRODUCTION ................. .................. 1

II RANDOM LOADING ............ ................. 12
1. The Expected Rate of Upcrossings ...... 13
2. Gust and Maneuver Loads as Composite

Gaussian Process ...................... ..... 14
3. Gust and Maneuver Loads as Single

Gaussian Process ........ .............. 16
4. Combination of Composite and Single

Gaussian Process ........ .............. 16

III FATIGUE CRACK PROPAGATION ..................... 18
1. Crack Propagation under a Constant

Amplitude Load .......... .............. 18
2. Crack Propagation under a Random Loading . 19

IV STATISTICS ON RISE AND FALL OF A RANDOM PROCESS 22

V RESIDUAL STRENGTH ............................. 29
1. Slow Crack Growth Model . ......... . 29
2. The Fail-Safe Design ...... ............ 30

VI FAILURE RATE ............ .................. 32

VII PERIODIC INSPECTIONS ........ .............. 36

VIII PROBABILITY OF FAILURE ...... ............. ...... 39
1. Probability of Failure Based on Distribution

of Time to Crack Initiation .. ........ ..... 39
2. Probability of Failure Based on Distribution

of Initial Crack Size with No Cursory
Inspection ............ ................. 41

3. Probability of Failure Based on Distribution
of Initial Crack Size with Cursory Inspection 44

4. Probability of Failure of Proof Tested Aircraft 46

IX SENSITIVITY ANALYSIS ........ .............. 48
1. Model Sensitivity ....... ............. 48
2. Parameter Sensitivity ..... ........... 49

X SIGNIFICANCE OF FULL-SCALE TEST .. .... .... 53

XI NUMERICAL EXAMPLES AND DISCUSSION .. ....... 58

XII CONCLUSION AND RECOMMENDATIONS FOR FURTHER
STUDY ................. ..................... 65

REFERENCES .............. ................... 68

v



LIST OF ILLUSTRATIONS

Figure Page

1 Flight-by-Flight Load Spectrum, Ultimate . . . . 72

and Residual Strength

2 Exceedance Curves for Transports .... ........ .. 73

3 Exceedance Curves for Fighters ... ......... .. 74

4 Crack Growth Rate as a Function of ... ....... .. 75
Stress-Intensity-Factor Range

5 Fatigue Crack Growth Rates at Low .. ...... 76
Stress Intensities (2024-T3 Aluminum)

6 Crack Growth Rates under Random ... ........ .. 76
Loading (Ref. 36)

7 Crack Growth Rates under Sinusoidal .. ...... .. 76
and Random Loading (Carbon Steel)
(Ref. 38)

8 Crack Growth Rate Model Used in ... ........ .. 77
Analysis

9 Comparison of Growth Rates under .... ........ .. 78

Sinusoidal and Random Loading

10 Rectangular Power Spectrum .... ........... .. 79

11 Sample History (c= 0) ...... ............. .. 80

12 Sample History (= : 0.25) ....... ........... 81
c

13 Sample History (A = 0.50) ......... ........... 82
c

14 Sample History (ýc= 0.75) .. .. .. .. . .. 83

15 Sample History (A = 0.80) ....... ........... 84c

16 Sample History (Ac= 0.90) ....... ........... 85

17 Counting Methods ......... ............... 86

18 Coefficient A as a Function of Band-.. ..... ... 87
Width Parameter A for b = 1, 2, , 5
(Case I)

19 Coefficient A as a Function of Band-. . .... .. 88
Width Parameter A for b = 1, 2, ., 5
(Case II) c

vi



LIST OF ILLUSTRATIONS (CONTINUED)

Figure Page

20 Coefficient A as a Function of Band- . ...... .. 89
Width Parameter B for b = 6, 7, . . 0, 10
(Case I) c

21 Coefficient A as a Function of Band- . ...... .. 90
Width Parameter B for b = 6, 7, . . 0, 10
(Case II) c

22 Sample History (Maneuver; Symmetric) ........ .. 91

23 Sample History (Maneuver; Asymmetric) . , . . 92

24 Load-Time History of a Typical Fighter ..... .. 93
Mission

25 Coefficient A as a Function of Power b ..... .. 94
(Maneuver)

26 Relationships among Ro, R(t m), a0 , a. c and a(t) 95

27 Relationships among t , t1 , t. , t and t . . . 95
o i m n

28 Probability of Detecting a Crack of Size a . 96

29 Periodic Rigorous Inspections ... ......... 97

30 Compatibility between G(a ) and W (t 0o) .. ...... 98

31 Density Function G(a ) Compatible with a . . . 99
Weibull Density W(to0

32 Distribution of Initial Crack Size Plotted . . . 100

on Frechet Probability Paper

33 Periodic Rigorous and Cursory Inspections . . 101

34 Parametric Sensitivity Analysis Procedure . . . 102
with a as an Example

0

35 Residual Strength, Crack Size and Failure . . . 103
Rate as Functions of t

n

36 Effect of Rigorous Inspections .... ........ 104

37 Effect of Cursory Inspections (I) .. ....... 105

38 Effect of Cursory Inspections (II) ......... .. 106

vii



LIST OF ILLUSTRATIONS (CONTINUED)

Figure Page

39 Effect of Proof Load Test .... ........... .. 107

40 Sensitivity Study (Examples) ... ......... 108

41 Probability of First Failure When No ......... 109
Threshold is Assumed for (AK- -/Li

42 Effect of Number of Inspections (W(t) . . . . 110
Method)

43 Effect of Number of Inspections (G(a) ii1
Method) 0

44 Probability of First Failure of a ......... .. 112
Fleet of 50 Fighters; the Effect
of Number of Inspections (Steel)

45 Probability of First Failure of a ......... .. 113
Fleet of 50 Fighters; the Effect
of a (Steel)

S

46 Probability of First Failure of a ......... .. 114
Fleet of 50 Fighters; the Effect
of Number of Inspections (Aluminum)

47 Probability of First Failure of a ......... .. 115
Fleet of 50 Fighters; the Effect of
a (Aluminum; Fail Safe)

S
48 Probability of First Failure of a .. ...... 116

Fleet of 50 Fighters; the Effect of
GS (Aluminum; Slow Crack Growth)

viii



LIST OF TABLES

TABLE Page

1. Irregularity Ratio R ....................... 117

2. Expected Value of b-th Power of Rise ..... .. 118
and Fall

3. Sensitivity Analysis (Slow Crack Growth,. 119
Crack Initiation Model)

4. Sensitivity Analysis (Fail Safe, Crack . . 120
Initiation Model)

5. Sensitivity Analysis (Fail Safe, Pre- . . . . 121

existing Crack Model)

6. Representative Values of Shape Parameter a. 122

7. Scatter Factors S for Reliability Level . 123
R = 0.5

8. Scatter Factors S for Reliability Level . . . 124
R = 0.90

9. Scatter Factors S for Reliability Level . . . 125
R = 0.99

ix



LIST OF SYMBOLS

Alb, A2 b, A3b = parameters to determine rise and fall of stress
process corresponding to clear air turbulence,
thunderstorms and maneuvers, respectively

a(t) = total crack length at time t

a* = crack size at t = t or upper bound of pre-existing crack
size in G(ao) method

ao = pre-existing crack size in G(ao) method or crack size
initiated at t = to in W(to) method

aic = initial critical crack size

a = fail--safe crack size

aTH = threshold crack size

a, = smallest crack size detectable by inspection

a2 = smallest crack size always detectable by inspection

a = crack size detectable by cursory inspection

aop = smallest initial crack size eliminated from population
by proof load test

b = parameter in crack propagation model

c' c' = material constants

d = parameter in spectral density of maneuver loading

e = parameter in crack propagation model

F(a) = probability of detecting a crack of size a

F*(a) = probability of not detecting a crack of size a

Fc(a) = probability of detecting a crack of size a by cursory
inspection

,

F c (a) = probability of not detecting a crack of size a bycursory inspection

f(k) (x) = probability density function of random standard
deviation a

x



LIST OF SYMBOLS (CONTINUED)

f (x) = probability density function of residual strength RR

G(a ) = probability density function of initial crackdistribution

G' (ao) = probability density function of initial crack

distribution after proof load test

g = gravitational acceleration

hk = failure rate

ho = failure rate corresponding to threshold Ro

i = imaginary unit or index

j = index

Kc = critical stress intensity factor

AK = range of stress intensity factor

AKb = average of the b-th power of range of stress intensity
factor

k = index

m = parameter appearing in expression for U2 (a) or index

(i)
N = characteristic frequency

N = characteristic stress response frequency corresponding
g to gust

N = characteristic stress response frequency correspondingto maneuvers

N = characteristic stress response frequency corresponding
z to ground-air-ground loads

P(j) = probability of first aircraft failure in [0, jT0 ]

P = probability of first aircraft failure with no inspections0

PM(j) = probability of first failure in [0, JTo ] in a fleet of
M airplanes

xi



LIST OF SYMBPLS (CONTINUED)

P =mean value of failure probability

PI' P2' p 3 = fractions of aircraft flight time spent in clear air

turbulence, thunderstorm and maneuver, respectively

Ro = ultimate material strength

R(tm) = residual material strength at time tm after crack size
reaches a.

S b(t) = ground loads

S. (t) = individual Gaussian (patch) stress process

Sg(t) = gust loads

Sgc(t), SgT(t) = loads due to clear air and thunderstorm turbu-
lence, respectively

Sk(t) = single or composite Gaussian load processes; k = 1 for

-- CAT, k = 2 for thunderstorm and k = 3 for maneuver

Sm(t) = maneuver loads

, stress response spectral density corresponding to Si(t)

SiM = stress response spectral density corresponding to gust
g

Sm*( = stress response spectral density corresponding to maneuver

Sb = average of b-th power of rise and fall of stress process

gS gT' Sbm Sb = average of b-th power of rise and fall of stress
' gT' m' z process corresponding to clear air turbulence,

thunderstorm, maneuver and ground-air-ground load,
respectively

So = parameter appearing in expression of spectral density for
maneuver loading

T = service life of aircraft or flight time between inspections

To = time intervals between inspections

0T*= minimum life in Weibull distribution

TH = subscript indicating threshold value

t = time

tic = time at which initial critical crack size aic is reached

tTH = time at which crack size reaches aTH

xii



LIST OF SYMBOLS (CONTINUED)

t = time after crack initiation
n

to = time to crack initiation treated as a random variable

U1 = inspection probability

U2 (a) = crack detection probability

Vo = coefficient of variation of ultimate strength

W(t 0 ) = probability density function of time to crack
initiation

X0 =stress associated with one g loading

XI, X2 . . . . . . . , X = system variables for sensitivity analysis' n

XI' X2 . . . . . . . . n = average values of system variables

Z = ground-air-ground load

S= shape parameter in Weibull distribution

*= shape parameter in initial crack distribution

ai =sensitivity index

= scale parameter in Weibull distribution

scale parameter in initial crack distribution

ýc = measure of bandwidth of rectangular spectral density

X, X' = material constants

lo= mean of residual strength R
+
v (Ro) rate of upcrossing of threshold Ro by a compound

Gaussian process

v+ (Ro, a) = rate of upcrossing of threshold R. by a Gaussian
process with mean Xo and standard deviation a

= factor indicating residual strength at fail-safe crack
size a s

p = number of cursory inspections in an interval between rigorous
inspections

xiii



LIST OF SYMBOLS (CONTINUED)

u = standard deviation

YR = standard deviation of residual strength R
aCI' aC2' ,C3 = stress intensities due to clear air turbulence,

thunderstorm and maneuver, respectively

aS = standard deviation of stress

T = number of rigorous inspections

w = frequency in rad/sec

w = break frequencyB

wC = upper cut off frequency

xiv



I. Introduction

The probabilistic concepts were first introduced in the

1940's (e. g. Ref. 1) in dealing with the assessment and assur-

rance of structural safety, and have been developed over the

last three decades into what is currently known as the struc-

tural reliability analysis (e. g. Ref. 2). Recently, attempts

are being made in various disciplines of engineering to imple-

ment these concepts in design situations in the form of

probabilistic structural design by devising reliability-based

design criteria (e. g. Refs. 3 and 4).

The emphasis of the structural reliability analysis has

been placed in the estimation of the structural safety in

terms of the reliability which is defined as the probability

that a structure subjected to loads and/or other adverse envi-

ronments will perform its specified mission without failure.

In the classical approach, this probability is estimated under

the assumption that all possible failure mechanisms under the

projected operational conditions and all pertinent parameters

having significant effects on these failure mechanisms are

known and at the same time, probabilistic characteristics

(such as probability distributions) of all these parameters

are also known. In some cases, the failure mechanism itself

might exhibit intrinsic random characteristics (e. g., fatigue

or crack initiation process). Every effort should be made to
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improve the confidence of such an estimate making use of all

available probabilistic and statistical techniques. The

level of sophistication of these techniques should not only

reflect the quality and quantity of the information available

but also be consistent with the present state of the art of

(a) structural or stress analysis, (b) failure analysis, parti-

cularly techniques of predicting various modes of structural

failure, (c) environmental and load analysis including pro-

jection techniques of future operational conditions and (d)

inspection techniques and repair capabilities. This clearly

indicates that the confidence of the reliability estimate is

simply a reflection of the accuracy of the information and

the state of the art of the engineering science pertinent to

the reliability and maintainability problem at hand.

The current general consensus seems to be such that the

reliability analysis and the probabilistic design based on it

are referred to as classical unless the following conditions

are met: (1) An active recognition is given to the problem of

the statistical confidence to the extent that an effort is made

to estimate such a confidence with possible use of the Bayesian

concept and (2) the problem of structural safety is considered

in a wider perspective in relation to other significant factors,

such as economic considerations. Hence, the reliability-based

design criteria in modern context should be developed from the

view point of systems analysis with an emphasis on a systematic

-2-



and consistent use of analytical tools as well as empirical

data available at the present time for the ultimate purpose of

making design and management decisions.

In spite of the difficulties often associated with the

structural reliability analysis such as due to system complexity,

insufficiency of data, limitation in the current technical

knowledge, etc., the techniques typical of the reliability

analysis play a central role in the development of the relia-

bility-based design criteria: With the aid of these techniques,

a definitely better understanding will be achieved on (a) the

effect of increasing the value of significant design and

management parameters (such as safety and load factors, stress

allowables and inspection period) on the structural reliability,

(b) the sensitivity of the structural reliability to other

design and management parameters, (c) the additional informa-

tion needed to improve accuracy of the reliability estimate

and (d) from this understanding, a consistent and systematic

way of making design and management decisions will emerge.

Items (a) and (b) will indicate the impact of design and mana-

gement decisions on the reliability level while Item(c) the

cost of improving the confidence in the reliability estimate.

Also, sensible and well disciplined use of subjective engineering

judgement in the Bayesian framework is considered potentially

beneficial in certain decision situations to bring about the

compromise required and even desirable for reasonable blending

-3-



between the analytical rigor and the availability of pertinent

information.

The purpose to be achieved by the design of aircraft

structures in accordance with specified reliability-based

criteria is to ensure a quantitatively specifiable, optimal

level of reliability for a fleet of estimated order of magni-

tude of airplanes intended to be operated within the frame of

an adequately defined spectrum of missions in the course of the

anticipated service life. The level of reliability must be

uniquely related to the expected performance of the aircraft

structure in terms of the inspection and repair policy as well

as in terms of the variability of the missions, of the material

performance and of the environment. Any significant change in

these features should clearly be reflected in the change of the

associated reliability level so that, as the need arises, fleet

management decisions can be based on the rational assessment of

the consequences of such changes. Thus, it is clear that a

computational routine should be developed which would permit

the quantitative assessment of the effect on the reliability

level at any time during the service life, of any significant

change in the conditions under which the principal design and

management decisions have been derived. In fact, the establish-

ment of such a routine should be a part of the major effort

in developing the reliability-based design criteria. Such a

routine is also used to identify those design and management
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parameters whose variations produce no significant changes on

the reliability level.

In order to achieve the purpose outlined above, the

procedures of probability--based structural design (for example,

as summarized in Ref. 5) must be developed considering crack

initiation and propagation processes, residual strength, ins-

pection policy, crack detection capability, proof test, etc.

so as to combine all significant aspects of aircraft design

that reflect not only the selected specific structural scheme

with its associated potential failure mechanism but also the

anticipated inspection requirements.

To achieve the requirement for actual demonstration and

compliance that the specified reliability-level has been

attained, order-statistical procedures as well as fracture-

mechanics considerations must be combined with the procedures

referred to above into an effective operational demonstration

of the fleet reliability level, for example, on the basis of

the observation of the time to the initiation of a crack of

critical or propagating size in the first and possibly second

unit of the considered fleet.

The general framework for the development of reliability-

based criteria for aircraft, however, will necessarily emerge

as a compromise between the application of such basic theoreti-

cal procedures of probabilistic structural design and the

requirements of ready implementation of such criteria. These

-5-



requirements should provide a format that makes it reasonably

simple to translate design-procedures and design-decision

processes currently used in the Air Force and in the airframe

industry into formally not too dissimilar procedures and pro-

cesses which reflect, however, the new probabilistic concept

of the engineering reality. Thus, in order to assess the

reliability of an existing fleet of airplanes as well as to

set the criteria for the design of an airframe for a unit of

a future fleet, the statistical distribution of each of the

significant influencing factors, such as service loading, struc-

tural performance parameters of the material as well as of the

fabricated structure, environmental conditions, inspection and

repair procedures must be adequately characterized.

In this regard, the present circumstances are much more

favorable, although far from being perfect yet, because the

immediate availability of relevant data on these factors has,

in recent year, systematically increased as exemplified by Refs.

6 - 15 on the gust and maneuver loading, Ref. 16 on the

ultimate strength of aircraft structures and Ref. 17 on the

fatigue crack initiation. Also, encouraging is the fact that

the use of such information either for the purpose of relia-

bility estimation or for the purpose of developing reliability-

based design and management criteria has recently begun to

appear in the literature; for example, Refs. 18 - 22 on inspec-

tion, crack detection and repair of fatigue sensitive structures,
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Refs. 24 and 25 describing a possible statistical approach useful

for reliability demonstration, Refs. 25 and 26 on the damage to-

lerant requirements and Ref. 27 on the overall reliability study

involving crack initiation and propagation processes under

random loading conditions as well as optimum inspection policy.

The analytical reliability analysis of aircraft structures

developed in this study combines the material selection proce-

dures and the material allowables, statistical nature of loads,

fatigue crack initiation and initial crack distribution models,

crack propagation and strength degradation, full-scale testing

proof load testing, and various crack inspection techniques.

The material selection is made on the primary requirement

that the aircraft design result in a light-weight and cost-

effective yet durable structure with low structural maintenance

needs. Recent studies, quite often, indicate that high static

strength metals tend to exhibit relatively inferior fatigue

performance (not only the average trend but also the statistical

scatter) compared with medium static strength metals. This

should be reflected in the scatter factor in the durability

analysis (Ref. 28). A similar trend appears to exist in the

fracture performance of metals as exemplified by a diagram

showing the relationship between the crack length parameter

and the structural efficiency parameter (Ref. 25). The material

allowables are currently based on relevant MIL-HDBKs as well as

on the experiments performed to augment the data base particularly
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on fatigue and fracture characteristics. The allowables are

basically responsible both for the size of major structural

components and for the durability and damage tolerant perfor-

mance of the elements thus having a direct impact on the risk

of failure.

The random loading on aircraft structures considered

herein is a flight-by-flight loading consisting of ground

loads, gust loads due to clear air turbulence (including ope-

rational gust) and thunderstorms, ground-air-ground loads and

maneuver loads. These loads are modeled either as composite

Gaussian random processes consisting of a sequence of Gaussian

patches, or as single Gaussian processes. Experimental infor-

mation tends to indicate that most of the gust loading and the

maneuver loading for cargo or transport type airplanes can be

modeled by composite Gaussian processes while the maneuver

loading for fighter type airplanes can be approximated more

closely by single Gaussian processes (Refs. 6, 8 - 12).

The random characteristics of crack initiation and growth

are treated in two different ways. In one approach, the time

to crack initiation is considered as a random variable having

a two-parameter Weibull distribution. In an alternative and

newly proposed approach, the initial crack size in the struc-

ture is considered as a random variable. The analysis method

used in this approach does not depend on the particular form

of the distribution of initial crack size. For useful com-

parison of these approaches, however, physically compatible
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distributions of time to crack initiation and of initial

crack size must be provided. For this reason, the probability

density function of the initial crack size is determined by

a compatible transformation of the probability density func-

tion of the time to crack initiation. Then, aircraft relia-

bility study is performed using both of these approaches.

Both approaches use fracture mechanics method to estimate

propagated crack size and corresponding residual strength under

random service loading conditions. For this purpose, the

statistics of rise and fall of the random stress process need

to be evaluated. This is achieved by utilizing the approximate

analytical methods given in Refs. 29 and 30 or digital simula-

tion techniques (Refs. 31 - 33). The residual strength is

assumed to be related either to the existing crack size and

fracture toughness by the Griffith-Irwin equation in case of

slow crack growth design while it is obtained as a function of

crack size and other parameters of redundancy in case of

redundant design. Once the residual strength is established,

the failure rate is evaluated as the rate of upcrossing of

the residual strength by the random stress process. The

probability of aircraft failure is then computed on the basis

of this failure rate taking the inspection procedures into

consideration.

Because only one full-scale model can usually be used

for static (to verify the design ultimate), fatigue, and damage
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tolerance test, the statistical significance of such tests

should be carefully examined by the mathematical statistics

method together with the aid of the test performed on labora-

tory specimens and structural components. Also, it is highly

important to clarify the relations between variability of the

fracture control and fatigue parameters observed in material

tests on specimens of various sizes and thickness, and the

expected scatter for full-scale structural parts or complete

structures, as influenced by the material, the fabrication and

assembly and the structural configuration itself.

In the present study, the effect of proof test is investi-

gated by appropriately truncating the probability density of

the initial crack distribution.

Investigation of the impact of inspection procedures on

the aircraft reliability is one of the central themes of this

study. The purpose of inspection is obviously to detect

fatigue cracks in critical structural details so that the componei

can be repaired or replaced thus increasing aircraft reliability.

The probability of crack detection depends on the particular

inspection technique used and it is usually an increasing

function of the crack size. Two basic types of inspection

techniques are included in this study: (1) Periodic base or

depot (rigorous) inspections utilizing a particular NDI tech-

nique and (2) cursory inspections to detect relatively large

crack sizes performed periodically between the rigorous

- 10 -



inspections. The important factors in this connection are

the inspection interval and the magnification factor associated

with it as specified in MIL--A-83444. Determination of the opti-

mum inspection interval balancing the inspection cost and the

resulting increase in aircraft reliability is also an important

item to be considered.

Numerical results are presented to show the effect of

inspection frequency, type of inspection, choice of crack

propagation model, proof test, and the type of loading.

Sensitivity studies are also performed to identify and examine

those parameters to which the aircraft reliability is most

sensitive.
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II. Random Loading

The operational flightt_-by-flight service loads produce

11component stress processes" such as Sb(t), SgC(t)l SgT(t)' Sm(t)

and Z(t) due respectively to ground load, clear air turbulence,

thunderstorm turbulence, maneuver and ground-air-ground load in

addition to the special loads due to refueling, terrain follow-

ing, etc. (Figure 1). The component process S b (t) due to taxiing

produces -mainly stresses opposite in sign to those under flight

conditions and therefore have an effect on the fatigue life.

However, the effect is believed to be insignificant in comparison

to that due to other loadings and is disregarded in this study.

The process Z(t) due to ground-air-ground load can be con--

sidered as a random variable. The magnitude of this loading is

large and it exerts a significant effect on the total fatigue

life of the aircraft.

Flight data tend to indicate that the component process S 9(t)

- either SgC(t) or S gT(t) due to gust can successfully be

modeled as "composite Gaussian random process" composed of indivi-

dual Gaussian patches with different standard deviations, which

are treated as random variables. A composite process model results

in an exceedance of the type exp[-.x]. Figure 2 indicates that

such composite model can also be applied in approximation to maneu-

ver loads for transports and possibly for bombers, while the

exceedance of a single Gaussian process is of the type exp[-x2

(see Figure 3; note that the abscissa is in x 2 ) and fits well to

fighter maneuver loads.
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In this study, options are provided to treat the component pro-

cesses S (t) and S (t) either as composite Gaussian processesg m

or as single Gaussian processes.

1. The Expected Rate of Upcrossings

The expected rate of upcrossings by the k-th composite

random stress process Sk(t) can be defined as

Vk+(Ro) = ff(k) (x)v (Ro, x)dx (1)
k Yi0

(k)
where f (x) are the probability density functions of the

a

random variable a (standard deviation) and v+(Ro, x) is the

expected upcrossing rate of the threshold R (ultimate strength) by

an individual stress process Si (t) with standard deviation x.

For a Gaussian process Si(t) with mean Xo and standard devi-

+
ation ai, v (Ro, a.I can be written (e. g., Ref. 34) as

1

v +(RO, Ia) W exp{-(R - X ) 2 /2a}i (2)
0 10 0 1

where N W is the characteristic stress frequency (the expected

rate of zero upcrossings) given by

(i) 1 S00 I½
N - Uf W2 St ()dw/ S/f (w) 2 (3)1 1

27r -- "-0

in which St(w) is the spectral density of the stress history1

S. (t).
1
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2. Gust and Maneuver Loads as Composite Gaussian

Processes

Gust loads Sg.(t) are modeled as composite Gaussian processes

and classified into Sgc(t) and SgT(t) due respectively to clear

air turbulence and thunderstorm. For a transport type airplane,

the maneuver loading can also be approximated by a composite

Gaussian process. The standard deviations of individual patches

ai' i = 1, 2 ....... (see Fig. 1) within the k-th composite

stress process are taken to be statistically independent and

identically distributed random variables with half normal

densities (Refs. 8 and 9 );

f (1(x) = (2/r Cl)2 ) exp{-xI/2l x > 0 (4a)i Cl Cl

(2) ½ep.x-2
f (2x) = (2/7r G 2 ) exp{-X 2 /2a 2  x > 0 (4b)GiC2 C2

f (x) = (2/r(3 2 ) ½exp{-x2/2a2 3 x > 0 (4c)
iC3 C3

in which a , a and a are the "intensities" of stressCI C2 C3

resulting from clear air turbulence, thunderstorm and maneuver,

respectively. It is implied here that composite Gaussian

processes associated with clear air turbulence, thunderstorm

and maneuver are respectively identified by k = 1, 2 and 3.

Using Eqs. 2 and 4, the expected upcrossing rates of these

composite Gaussian processes are evaluated from Eq. 1 as
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+

v (R ) = N exp{-(R - X )/a } CAT (5a)10 g 0 0 Cl

+
v (R ) = N exp{-(R - X )/a } Thunderstorm (5b)

2 o g 0 o C2

+
3(R ) = N exp{-(R - X )/a } Maneuver (5c)

3 m 0 0 C3

where
1 00-0

N = -{f W2 S* (w)dw/f S*(w)dw} (6)
g 2 7r -c g -0 g

1 C CO

N = -{f w2 S*(w)dw/f S* (w)dw} (7)
m 27T m -00 m

in which S*(w) and S*(w) are the spectral densities of stressg m
processes due to gust and maneuver, respectively. It is

important to note that Eqs. 5a, 5b and 6 are derived under the

assumption that the analytical forms of S*(w) are identical1

irrespective of index i and therefore they can be written as

S*(w) multiplied by a constant depending on i. This assump-
g

tion also implies that the spectral shapes of individual

Gaussian processes S. (t) are identical whether due to clear1

air turbulence or thunderstorm. The same assumption is

used for Eqs. 5c and 7.

The expected upcrossing rate under the combined loading

is then determined as

+ 3 +
V (Ro) = p v C(R°) = p N exp{-(R - X )/UCI

0 k=1lkk 0 lg9 0 0 Cl

+ p 2 N exP{-(Ro - Xo)/a 2 }+ p 3 Nmexp{-.(R - X)/c 3 } (8)
2 S 0 o
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in which pl' p2 and p3 represent the fraction of clear air

turbulence, thunderstorm and maneuver, respectively. It

should be noted that p + p + p3 = 1.

3. Gust and Maneuver Loads as Single Gaussian Processes

When gust and/or maneuver loads are taken as single

Gaussian processes S k(t), the probability density function in

Eq. 1 can be replaced by a delta function

(k)
f (x) = 6(x - 0 ) (9)
G. sk

in which a is the standard deviation of the stress corres-
sk

ponding to a single Gaussian process. Then, from Eqs. 1 and

9, the average upcrossings are

+ (k)
v +(Ro) = N exp{-(R - Xo) 2/2 (k} (10)
k 0 0 0 sk

where N(k) is obtained from Eq. 3 by replacing S (w) by1

S* (u) the spectral density of S (t).
k k

4. Combination of Composite and Single Gaussian Processes

It should be noted that with this approach a segment of

the random load can be treated as a composite process, while

the remaining portion can be taken as single Gaussian processes.

For example, if the gust is considered as composite processes
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and the maneuvers as a single Gaussian process, the expected

rate of upcrossing under the combined effect is

V+(R ) = P N exp{-(R - X )/o I] + p 2N exp{-(R - X )/aC2}

+ P N exp{-(R - Xo)2/2a } (11)
3 m 0 0 S3

where Nrq = N (3) is obtained from Eq. 7 with S*(w) replaced byI.,m

S3(w) (spectral density of maneuver load process S*(t) = Sm t)

idealized as a single Gaussian process).
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III. Fatigue Crack Propagation

1. Crack Propagation under Constant Amplitude Load

The fracture mechanics theory is applied to cracks of

detectable size initiated at certain time or to preexisting

cracks for the purpose of determining their propagating size

under a stress history. Under a constant amplitude stress

history, crack propagation can be represented by the well

known power law formula (e. g. Refs. 35 - 39)

da b
- c(AK) AK > AK (12)

dn TH

where da/dn is the rate of crack propagation (per cycle), !Vail

is crack size, AK is range of stress intensity factor and c

and e are material constants. These material constants exhibit

statistical variations from specimen to specimen. However,

within a specimen, it appears, they can be treated as deter-

ministic quantities. The values of these constants are deter-

mined from the experimental results such as those shown in Figs.

4 and 5. The value of b equal to 4.0 has been used by many

investiaators. It is also pointed out that below the threshold

value AKTH, the rate of crack propagation is drastically reduced

as observed in Figs. 4 and 5 and is so treated in the present

analysis.
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2. Crack Propagation under a Random Loading

The available experimental and empirical information on

crack propagation under random loading suggests that a modified

form of the power law given in Eq. 12 be constructed to repre-

sent the fatigue crack growth under such loading. In the

present study, based on the experimental data given in Figs.

6 and 7, it is assumed that the crack propagation under random

loading follows the law corresponding to the bilinear relation-

ship as depicted in Fig. 8, which is expressed as

da -- X/b -= /b b l/b
- = c(AK ) for (AK ) > (AK ) (13a)
dn TH

da b X'/b 1/b 1/b
= c'(AKb) for (AK- ) < (AK- ) (13b)

dn TH

where c, c', X and X' are material parameters to be determined

from Figs.6, 7 and 9. The expected value of the b-th power

of the range of stress intensity factor, AK , can be related

to the expected value of the b-th power of rise and fall of

the stress, S , and the crack length a as follows (Refs.29,37,38).

--F s-b b/2
AK =S (Tra/2) (14a)

b 1/b -1/b ½
(AK) = (S) (Tra /2) (14b)

TH TH

Eq. 14b provides the definition of a TH. The last two equations

are valid for a single through crack in an infinite plate with
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1/2

stress intensity factor K given by K = S(7Ta/2) . It follows

from Eqs. 13 and 14 that

dea -FX/b X/2 x/2 1/b i/7b) i/b
- = c(S) (Tr/ 2 ) a (AK > TH (15a)

dn

da - X1'/2 X'/2 /'b2 ..... 1/b b
-= c' ( Sb) (7/ 2 ) a (AK ) (AK< )/b (15b)dn THI

The present formulation is based on the existing practice

of data processing where the logarithm of the rate of crack

_b 1/bpropagation under random loading is plotted against (AK

with the same value of b as used in Eq. 12. As Fig. 9 illust-

rates, however, the experimental result indicate that the

plot does not necessarily result in a straight line and that

the slope of such a plot is generally different from b mentioned

above. In fact, the present study uses the bilinear relation-

ship with two distinct slope values X and X' and a threshold---1/b
value (AKb)l/b

Solving Eqs. 15a and 15b, fatigue crack length at time

t can be obtained from
n

1- X/2 X/2 A/b 1-A/b 2/(2-X)
a(t ) = {a + (1 - X/2)c(Tr/2) Q N t }n 0 0 n

a > a (16)
o = TH

1-A'/2 X'/2 A'/b i-A'/b 2/(2-A')
a(t ) = [a + (1 - A'/2)c(Tr/2) Q N t }

n 0 0 n

a < a(t) < a (17)
o TH
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1-X/2 X/2 X/b 1-A/b 2/(2-X)
a(t ) {a +(l- X/2)c(,F/2) Q N (t - t )}

a < a < a(t) (18)
0= TH=

where a is the initial crack size, t = t - t , t is time
0 n 0 0

to crack initiation (this is equal to zero if preexisting

crack is considered), Q = N S with

= (pN + p NSb + p N S + N s)/N (19)
g gc 2 g gT 3 m z z 0

N =pN + p2N + p3N + N (20)
o 1g 9 g 3m z

2 1-X'/2 1-X'/2 X'/b i-X'/b X'/2
tTH - {aTH -a }/{c'Q N (ir/2) }

TN 2-A' TNo

(21)
In Eqs. 19 - 21, S' Sg S S b are the expected values

InEq.1921 gc' gT' in z

of the b-th power of rise and fall of stress histories associ-

ated with clear air turbulence, thunderstorm, maneuver and

ground-air-ground load, respectively.
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IV. Statistics on Rise and Fall of a Random Process

As observed in Sec. III, the rate of crack propagation

is directly proportional to the expected value of the b-th

power of the rise and fall of the random stress process.

If the stress process S k(t) associated with a particular

loading (e. g. clear air turbulence, thunderstorm, etc.) is

a single Gaussian with mean zero and standard deviation aSk

the expected value can be written in the form

b
S= A aSk (22)

where A is determined either by using the approximate

analytical techniques proposed in Refs. 29 and 30 or by the

method of random process simulation (Refs. 31 - 33). If the

stress process S k(t) is a composite process consisting of

patches of single Gaussian processes S. (t) with mean zero and

standard deviation a., the expected value of the b-th power
1

of the rise and fall of S. (t) is given, similarly to Eq. 22,1

by

S b(a ) = A ab (23)
i i

and the expected value of the b-th power of the rise and fall

of the composite process S k(t) is given by
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S oos(x)f (x)dx (24)
k = cf x O

(k)
where f is the density function of a. as introduced incx 1

Sec. II.

From Eqs. 4a, 4b, 4c, 22, 23 and 24, Sb for clear air
k

turbulence (k = 1), thunderstorm (k = 2) and maneuver (k = 3)

are obtained as

b 2n

Sb = A {(2n - 1)!!}a (b =
gC lb Cl

= A (2/n 2 n C 2n+l (b = 2n + 1) (25)
lb n! Cl

b 2n
SgT = A2b (2n - i)!!I!}OC2 (b = 2n)

A~b(2 I),n n 2n+l
= A2b(

2/w2'2 anC2 (b = 2n + 1) (26)

-- 2n

A {(2n - I)!!}ICa3  (b = 2n)m 3b- C

= Ab(2/T)i) n 2n+l (b = 2n + 1) (27)
3b C3

with (2n - 1)!! = 1-3-5 ......... (2n - 1).

In Eqs. 25 - 27, Alb, A2b and A 3b represent the coefficient

A in Eq. 23 associated with the stress due to clear air
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turbulence, thunderstorm turbulence and maneuver, respectively.

For the purpose of evaluating these coefficients by

simulation method, sample time histories of S(t) are generated

by means of the simulation technique given in Refs. 31 - 33

assuming the normalized spectral density function shown in

Fig. 10 which can be expressed as

1
S(M) = _ for w w < w < w

(1 - Ac)w C C : = C
C c (28)

= 0 otherwise

where Ac = measure of bandwidth of Si (t) and wc = upper cutoff

frequency. Portions of these simulated time histories are

shown in Figs. 11 - 16 for various values of parameter Ac-

Then, the average of the b-th power of rise and fall of S i(t)

is computed using the two counting methods indicated in Fig.

17. In the first method (case I), every one of rise and fall

is computed, raised to the power b and averaged, while in the

second method (Case II) the rise and fall are constructed by

considering only those alternating peaks and troughs which

are the maxima or the minima in the time intervals between

successive zero crossings. The results are summarized in

Figs. 18 - 21 for various values of b. The irregularity

factors evaluated from the sample time histories compare

extremely well with the theoretical result as shown in Table
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1. Also, a comparison between the values of A obtained form

simulation and the ones by the approximate theoretical

methods (Refs. 29 and 30) is presented in Table 2. A good

agreement is observed for those values of b considered in

the theoretical methods under the conditions of Ref. 30

(narrow Band with ý = 1.0) and of Ref. 29 (wide band withc

= 0). The results for narrow band cases are particularlyc

useful with respect to the stress response process to

turbulence, since such response process is expected to be

narrow band because of structural filtering effects,

A collection of many acceleration records during maneuver

indicates that the (acceleration) load history exhibits the

characteristics of a wide band random process. To represent

the maneuver load in frequency domain, therefore, the

following form of spectral density has been empirically

suggested for a fighter type airplane (Ref. 12 ).

S M so W < W < (29)
m 2f{l + (w/w B)d} D

2
where d = 2.6, w, = 2ff x 0.031(rad/sec) and S 0 30 (g sec)

with wD indicating the lower cut--off frequency. If the

maneuver loading is assumed to be a (single) Gaussian random

process, then the load exceedance curve (interpreted as in-

dicating level crossing) is symmetric with respect to negative

and positive loading. Experimental measurements tend to
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indicate (as shown in Fig. 2) that such an assumption may be

valid for an airplane of transport type. However, as observed

experimentally and also as specified in Military standards

(see Fig. 3), the positive and negative parts of the load

exceedance curve for a fighter due to maneuvers are markedly

different. To account for this fact, the following procedure

is proposed: Consider two Gaussian processes Y p(t) and Yn(t)

which are associated with the symmetric exceedance curves

respectively constructed from positive and negative parts of

the (specified) asymmetric exceedance curve. Let u and aP n

denote the standard deviations of Y (t) and Y (t) . These

standard deviations can be evaluated from the positive and

negative slopes of the specified asymmetric exceedance curve.

Then, digitally generate Y p(t) in the same manner as above

using the spectral density given in Eq. 29 (see Fig. 22 for

sample time history) and construct Y(t) so that

Y(t) = Y (t) Y (t) > 0
p p

(30)

= rY (t) Y (t) < 0p p

where r a n/a . The process Y(t) thus constructed producesp
the same exceedance curve as specified. A sample time history

of Y(t) with WD = 21 x 0.007 rad/sec and r = 0.3 is shown in Fig.23.
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From the time history Y(t), the expected value of the
b

b-th power of rise and fall, Sm, is calculated using the coun-

ting procedures indicated in Fig. 17. It should be noted that

the parameters d, w B ,D' So in Eq. 29 can be adjusted to repre-

sent maneuver loading for a variety of fighters under different

flight conditions. The transformation between the maneuver

loading in terms of acceleration, Y(t), and stress, Sm(t), can

be performed in a quasi-static manner. This is due to the fact

that maneuver loads are applied at a relatively slow rate in

comparison to the structural dynamic sensitivity of a critical

part in an aircraft. The energy in the maneuver spectral

density Sm(M) is concentrated at low frequencies while the peaks

of the absolute frequency response function IH(w) I appear at

higher frequencies. Thus, the time history of the stress at

a particular critical point in the aircraft due to maneuvers can

be written as Sm(t) = CY(t) where C is a proportionality con-

stant. For example, from Ref. 13 (Fig. 24) it can be observed

2that C 4KGF/mm for wing-root bending stress for a fighter.

Because of this proportionality, the coefficient A in the

equation S = Aab (see Eq. 22) is identical with the coefficientm 3S _

A in the equation Yb = Aa where Y 1T is the expected value of the

b-th power of rise and fall of Y(t). Hence, the values of A

are evaluated from time histories of Y(t) (Fig. 23) and plotted

in Fig. 25 as functions of b (dotted curves). The solid curves

in Fig. 25 indicate the values of A appearing in the equation
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yb = Aab and obtained from time histories of Y (t) (Fig. 22).
P p p

The dotted and solid curves in Fig. 2 5 , therefore, show the

difference between Sb based on the specified asymmetric excee-m

dance curve and on the corresponding symmetric exceedance curve.

It is pointed out that if Y (t) is a narrow band, S evaluatedp m
from Y(t) is equal to evaluated from Y (t) multiplied by

m p
b b

(1 + r) /2b. In the numerical example that follows, the solid

curve for Case II is used for aircraft of transport type because

they tend to have symmetric exceedance curves as previously

mentioned while the dotted curve for Case II is used for fighter

aircraft.
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V. Residual Strength

1. Slow Crack Growth Model

When the crack is interpreted as initiating rather than

pre-existing, a crack of size a is initiated at time to after

the aircraft is placed into operation. Then, the initiated

crack grows in its size in the manner as described in Sec. III,

and under the slow crack growth design, the (initial) ultimate

material strength R0 starts to decrease as crack reaches the

initial critical crack size a. at time t (= t + t. ) where1c o ic

t. is the time required for the crack to increase its size
iC

from a to aic,

The relationship between the residual strength and the

crack size can be expressed by the equation of Griffith-Irwin

type

KC = Roaic /2 (31a)

KC = R(t m) /ra(t ) 2 (31b)
C m m

where a. is usually larger than aTH and K = critical stress inten-ic THC

sity factor, a(t m) = crack size at time t1 + t m; i.e., at time t

after the crack reaches a ic. The interrelationship among Rof

R(t m), a0 , aic a(t m), etc.is schematically illustrated in Fig. 2 6

while the relationships among t0 , t1 , tm, tic and tn (tn will be

defined later) are illustrated in Figure 27,
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The time tic is evaluated from Eq. 16 or Eq. 17 as

2 1-X/2 1-X/2 A/b 1-A/b X/2
t. = (a. - a )/ cQ N (7T/ 2 )ic 2 - X c

a. > a > a (32a)ic o TH

2 i-A'/2 1-V'/2 A'/b 1-A'/b X'/2
t - (a -a )/ c'Q N (iT/ 2 )
iC 2-AV TH o 0

2 1-X/2 1-X/2 X/b l-X/b x/2
+ (a - ) / cQ N (it/ 2 )
2-A ic TH

a < a (32b)
0 TH

Then, the expression for the residual strength as a function

of time t becomes
m

½ 1-A/2 X/2 A/b 1-A/b 1/(2-A)
R(t ) =R a. /{a + (1 - A/2)c(ir/2) Q N t )m Roaic ic tm}

(33)

It is important to note that all the equations and the

definitions of parameters appearing in this subsection are

valid even when the crack of size a is assumed to be pre-0

existing (rather than initiating at to) so long as to is taken

to be zero.

2. The Fail-Safe Design
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A design practice to prevent the reduction of the residual

strength from reaching an excessive level is to introduce crack

stoppers in the structure, thus making the design fail safe.

In this case, Eqs. 31a and 31b are no longer valid to represent

the strength of a cracked structure. The strength of the fail

safe structures depends on a particular design and the residual

strength should be determined by individual analysis and testing.

Following Refs. 27, 40 and 41, the residual strength after tn

flight hours is assumed to be

2
a (t n) - a O

R(tn) = R {l - (1 - E) a n a } (34)n o a - a
s 0

where as = fail-safe crack size, ROE = residual strength at the

fail--safe crack size a, and 0 < E <1.
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VI. Failure Rate

A failure of the structure occurs when the residual strength

R(t ) is exceeded by the applied (random) stress. Then, then

problem is essentially that of a first-passage probability with

a variable one-sided threshold (Refs. 42 - 44). The expected

upcrossing rate v+(R ) of the stress process S (t) with respect
k o k

to the threshold value R0 (initial resisting strength) obtained

in Sec. II can also be used in approximation for the expected

rate with the variable threshold R(t ). The expected failure raten

h k(tn, R n), or risk function, associated with this first

passage problem can then be approximated by

+
h (t , Rn) = v (R )/M (35)
k n n k n c

where R is written for R(t n) and the clumpsize M > 1 (Refs.n n

43 and 44). For aircraft structures, the difference between

the initial strength R and the stress X due to one g load0 0

is by design much larger than the standard deviation of the

stress process, and also the restriction on the length of

service life as well as the implementation of the inspection

maintains the residual strength R(t ) at a higher level comparedn

with X in terms of the standard deviation of the stress process.0

Therefore, the events of stress excursion beyond the threshold

can be assumed to be statistically independent and hence
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Mc = 1 is used for the present purposes.

In this investigation, the residual strength is also con-

sidered as a random variable and therefore, the failure rate

given in Eq. 35 with Mc = 1 is modified as

h (tn) = f f (x)dx + f Vk(X)fR(X)dx (36)

0

where f R(x) is the probability density function of the residual

strength R(tn ). In this equation, the value of unity is used

for simplicity in place of v + (x) for the values of x less than
k

X . Since this is the range of x where f R(x) is insignificantly
oR

small, the resulting value of the integration is rather insensi-

tive to the assumption of v + (x) in this range of x.

A further modification is necessary when the loads on the

aircraft can be controlled by pilots or by other means. For

example, if the controlled maneuver results in a truncation of

the load spectrum, the failure rate is obtained from

X 0 + 00 + x d
hk = fo f (x)dx + f Vk(x)f R(x)dx - f vk(x)fR(x)dx

SR k mTX k

(37)

where mT X is the truncation level with m T(>l) being the trun-

cation index. To determine the failure rate due to a combined

effect of each component process k, one can use
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3

h(t ) = k hk(t) (38)
n k=l n

For a Gaussian distribution of the residual strength R(tn)

with mean value ynp and standard deviation = VoYnPo, the

probability density function is

1 (x - Y nilo0)2
fR exp{ no = (39)

R 72aR 2aR2

where for the slow crack growth model, yn is obtained from

Eq. 33 as

2-X1
2 X/2 X/2 l-X/b2-

y a½/(a-. + (1 - X/2)c(r/2) Q N (t - t )2 (40)
n ic ic o n ic

and, for the fail-safe design model, from Eq. 34,

a(t) - a ½
y= 1 - (1 - an oa } (41)

n a -a
s 0

When t = t in Eq. 40 and t = 0 in Eq. 41, y becomes unityn ic n n

and the density function in Eq. 39 represents that of the

initial resisting strength R
0

Using Eq. 39 in Eqs. 36 and 38 with expression of v +(x)
k

given in Eq. 5, one obtains the failure rate associated with a

combined stress process with no load truncation as
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3 T1

h(t) = 1 ½PPNi{ [1 - erf(- + exp[-(2Ti - r2 )/2] xn i=l 2r . 1 1

1

- r
[1 + erf(.--] (42)

in which N1 = 2 = N , = N , n = (y n /a ) - (X /a c),g in no ci aC

rl" = Voyno/a ci' Vo = G , i =1, 2, 3.

When each of the component loading processes is assumed

to be a single Gaussian with a truncated average upcrossing

rate, the failure rate associated with the combined stress

is obtained from Eqs. 10, 37, 38 and 39.

3 -1 i1
h(tn) ½PNi{(1 -erf) + (1 + rý) exp[-½(- + 3

in 1 1/1T V2  V2
i x

ri 1 r2 1 ] r -_

+ +( .... +--] 2 (1 + r)] [erf(-' (i + r.) 2Vx V 0 v/2n io1

1 1 r 1 1
+ erf{ 'r [(mT - 1) 1 + M - (43)

k Vx i x o

where Vx s o

If the combined stress process consists of single and

composite Gaussian processes, the failure rate can be expressed

in an appropriate combination of terms appearing in Eqs. 42

and 43. The computer program is written so that an arbitrary

combination of this nature can be accommodated.
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VII. Periodic Inspections

The purpose of inspection is to detect the fatigue and

pre--existing cracks in the structural components so that, before

cracks become critical,they can be replaced by uncracked com-

ponents to endure their designed initial strength at least at

the time of replacement. In this study, two types of aircraft

inspection at different levels of sophistication are considered:

(1) "rigorous" periodic inspections which might correspond to

the depot or base level inspection (Ref. 45) utilizing parti-

cular non-destructive inspection (NDI) techniques and (2)

"cursory" inspections which might correspond to in--flight evi-

dent, ground evident, walk around and special visual inspections

(Ref. 45).

The probability of detecting a fatigue crack at a struc-

tural detail during a rigorous inspection depends on the

probability of inspecting this cracked detail and the

resolution capability of the particular inspection technique.

Typical NDI techniques presently used include delta scan, shear

wave ultrasonic, magnetic particle, X-ray, and magnetic rubber

inspection (MRI) methods.

Define U1 as the probability of inspecting a cracked

detail and U 2(a) as the probability of detecting a crack of

size a. Then, the probability of detecting a crack during a

rigorous inspection can be obtained in general from
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F(a) = U1 U2 (a) (44)

where it was assumed that U1 and U 2(a) are independent. The

probability of not detecting a crack F*(a) is obviously equal

to 1 - F(a).

Since at this time, the information on the probability

U1 is limited, it is assumed in'this study that U1 = 1, i. e.,

every critical detail will be inspected. Based on the experi-

mental and empirical results, however, the detection probability

U2 (a) may be constructed in the following fashion (Refs. 21, 25

and 27 ).

U2 (a) = 0 a < a 1

m

[(a - al)/(a 2 - al] aI a < a2 (45)

=1 a2 < a

where 1/8 < m < 1/5 for accurate NDI techniques, m > 1/5 for

more crude NDI techniques, a1 = the minimum crack size below

which the crack cannot be detected with the particular detection

technique used, a 2 = the maximum crack size beyond which the

crack can always be detected.

In Fig. 28 . a plot of U2 (a) is shown for two different

values of parameter m (=1/8 and 1) with a1 = .02" and a 2 = .3".

Detection probabilities experimentally obtained for X-ray,
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ultrasonic and dye penetrant techniques are also indicated in

this figure (Ref. 25).

A similar crack detection probability model can be const-

ructed for the cursory inspections. However, since no definite

experimental information is presently available, the following

simple form is assumed for the probability;

F c(a) = 0 a < a(c aj (46)

Fc(a) = 1 a _> aj

where a' = the crack size below which the crack cannot be
1

detected by cursory inspection and beyond which the crack is

always detected. The probability of not detecting a crack by

the cursory inspection is F*(a) = 1 - F (a).
c c
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VIII. Probability of Failure

1. Probability of Failure Based on Distribution of Time to

Crack Initiation

Following Ref. 27 for the development of this subsection,

let Po be the probability of failure of the aircraft within

the intended service life T with no inspection. Then, assuming

the time t to crack initiation to be a random variable with
0

a probability density function W(to0), the probability of failure

can be expressed as

T

P = 1 - exp{-Th -(T/B) } - f W(t)exp{-th -H(T -t)}dt (47)

0

where h0 is the expected failure rate corresponding to the

threshold R0 or h0 = h(t ) in Eq. 38, and0

t
n

H(tn) = f h(t)dt (48)
0

In this study as in Ref. 27, a two-parameter Weibull distri-

bution of the time to crack initiation is used for W(to);

W(to) = * exp{- -- } t > 0 (49)
00

However, when the minimum life T* is reliably known, the
0

following three parameter Weibull density can advantageously
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be used (Ref. 46).

W(t) 0 c0t- c~l- exp{-[(t -T*)/ýII t > TJ (50)
0 3 0 0 0

in which a~ shape parameter and =scale parameter.

Assume now that the aircraft is subjected to a rigorous

inspection at the end of each T 0flight hours as indicated in

Fig. 29. The probability of failure P(j) within the [o, jT 0

interval (j-1 inspections) can then be obtained from

* j-1 T
P (j) = P. + Y f 0g.. (t)W11[ (i-1) T +t] dt (51)

j = 2, 3, ..

i = 1, 2p......., j-1

where

(1) -
q. W() F[a(T0 -t]C. (t) +{ HI F*[a(kT -t)]}V. .(t)
1J 0J ki 0 Ij

j-i k-l (k)
+ 6 .-i- X [ N F*[a(mT -t)]} FI~a(kT -t]C. Wt (52)

3-i2 ,=2 m=l 0 0 ij

P*= exp{-[(j-1l)T /N3 } exp{-[jT /] -jT h
J0 0 0 0

--f W[(j-l)T 0+tljexp{-h 0 [(j-l)T 0 +t]-H(T0 -t)}dt (53)

0

j = 1, 2....

V.. (t) = 1 - exp{-h [(i-l)T +tII-H[(j-i+l)T -t]} (54)
130 0 0
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Cik)(t) = 1 - exp{-ho[(i-l)To+t]-H(kTo-t)-K k

k = ], 2 . ...... , (j-i) (55)

K = -in [1 - P(k)] (56)

where 6. = 1 if j--i-2 > 0, and 6.- 0 otherwise.
j-i-2 3-1-2

The probability of failure given in Eq. 51 is for a single

aircraft. Assuming the event of failure of each aircraft to be

statistically independent, the probability of first failure in

a fleet of M aircraft in [0, jTo0] interval is

PM(j) = 1 - [1 - P (j)]M (57)

2. Probability of Failure Based on Distribution of Initial

Crack Size with No Cursory Inspection

In this case, the (initial) crack of size ao is assumed

to be pre-existing in the structure with a probability density

function G(ao). Although a number of alternative analytical

forms appear to be possible (Ref. 47), this investigation uses a

particular form of G(a 0 ) in the analysis which is compatible

with the two parameter Weibull density given in Eq. 49.

The significance of the compatibility is as follows: An

initial crack of size a increases its size under loading0

history and attains a specified size a (>a 0 ) at time to.
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If the crack propagation law given in Eq. 17 is used under

the assumption that a* < aTH, then to and a are related by

a~l-'/2 al-V'/2

t = (58)o (1 -. X'/2)c, (Tr/2) 'i Q '/jN -A'/b
0

Now interpret a* as the crack size initiated at time to in the

crack initiation model considered in the preceding subsection,

where symbol a is used for the initiated crack size rather0

than a*, however. Then, a density function G(ao) of initial

crack size a can be derived from the density function W(tO)

of t with the aid of the relationship given in Eq. 58;0

dt
G(a )0- °(t ) (59)

0 da
0

with

a-X1/2
dt 0  0 a°

c1 '/2 A ,/b lb -,/b (60)
da 0 C' (T/2) Q N

If Eq. 49 is used for W(t ) in Eq. 59, then G(a ) is the

desired density function of a compatible with the two para-0

meter Weibull distribution of t . This compatibility between

the initial crack distribution G(ao) and the distribution of
the time to crack initiation W(t ) is schematically shown in

Fig. 30 . An example of such compatible density function is

plotted in Fig. 31 where the values of Weibull parameters as
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well as those of the parameters involved in the crack propa-

gation law (Eq. 58) used for the plot are indicated. The

distribution function associated with this density function is

then plotted on the Frechet probability paper in Fig.32 .

Since the Frechet distribution is defined by the density function

Ot* a -c*-l -a*
G(a) -) exp{-(ao/1*) } a > 0 (6])

0 3* 0* 00

and is not limited to the right, the plot in Fig.32 naturally

curves upward asymptotically approaching a vertical line at

a = a* which in this example is equal to 0.04" and is the upper

bound of a
0

Under the assumptions that the structural component has

a pre-existing crack with a density function G(a 0 ), that the

component is subjected to a rigorous inspection at the end of

each period of T0 flight hours and that the component is replaced

by a new component if a crack is found by the inspection, the

probability of failure of an aircraft within the interval

[0, jT 0 ] is given by

00

P(j) =f G(a 0)P' (j)da 0(62)

where
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P' (j) = 1 - F[a(T)]exp{-H(T) - Kj_.}

j-l k-i
- [ fl F*[almT)]F[a(kT)]exp{-H(kT) - Kjk}

k=2 m=1

j-l
- H F*[a(kT)]exp{-H(jT)} (63)

k=l
with

K. - ln[l - P(j)] (64)
J

It is noted that Eq. 64 involves P(j) but not P'(j). This is

because the distribution of initial crack size of the replaced

component is assumed to be independent of that of the replacing

component.

The comparison between Eqs. 62 - 64 and the corresponding

equations in the crack initiation model indicates that the

probability of failure can be expressed with considerably less

analytical complexities under the assumption of initial crack

size distribution, although the integration in Eq. 62 must in

general be carried out numerically.

3. Probability of Failure Based on Distribution of Initial

Crack Size with Cursory Inspections

Consider the inspection procedure where the rigorous

inspection is performed on the aircraft T times in its service

life T at equal interval of T1 with additional cursory inspec-

tions performed p times in each rigorous inspection interval
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of T Then, T1 =(p + l)To, T = (T + 1)T 1 and T = (p + 1)[(T + 1)To

(see Fig.33 ). Under these circumstances, writing P(j) for the

probability of failure in the interval [0, jT 1 ] or [0, j(p + l)T ],

one can show that

00

P(j) = f p'[(p + l)j]G(ao)da 0  (65)

0

where

P? (i) = 1 - {6 [i-(p+l)n-l]F[a(T )]

+ [1--6 [i-(p+l)n-l]F [a(T )]exp[-H(T )-K I] }

i-1 k-l
- I• {6[i-i(p+l)n-im] F*[a(mTo)]

k=2 m=l

+ [i-6[i--(p+l)n-m]]F*[a(mTO)]II

{6[i-(p+l)n-k]F[a(kT0 )] + [l-6[i--(p+l)n-k]]

"F c[a(kTo ) ]}exp{-H(kT) - K ik}

i- o

- 11 {6[i-(p+l)n--k]F*[a(kT)]
k=l

+ [1--6[i-(p+l)n-k]]F*[a(kT )]}exp{-H(iTo)} (66)
c o

K. = -ln[l -- P(i)] (67)
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and 1 if there exists a positive
integer n such that

6[i - (p+l)n - k] i-k=(p+l)n (68)

0 otherwise

4. Probability of Failure of Proof Tested Aircraft

To include the effect of the proof load test, define a

probability density function G'(a ) for the initial crack

distribution in the following fashion (Refs. 48 and 49)

a
op

G(ao)/ f G(a )da 0 < a < a
0 0 0 =o' Op

G'(a) = (69)

0 a < aop 0

where a is the truncation level on G(ao) as a result of the

proof test. The probability of failure can then be determined

by the same procedures as described in 8.2 or 8.3 depending on

whether or not the cursory inspections are performed. The

necessary modifications consist of replacing G(a ) by G'(a 0 ) and

the infinite upper bound by aop in the intervals in Eqs. 62 and 65.

It appears difficult at this time to consider the effect of

the proof load test within the framework of the crack initiation

model described in 8.1. Furthermore, it is pointed out that Eq.

57 also indicates the probability of first failure in a fleet

of M aircraft in the interval [0, jT 0 ] for the cases of 8.2 and
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in the interval [0, jTI] in the case of 8.3. In the above,

8.1, 8.2 etc. indicate respectively subsections 1, 2, etc. of

this section (Section VIII). The same notation is used for

other subsections throughout.
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IX. Sensitivity Analysis

1. Model Sensitivity

In the preceding sections, a number of analytical models

are introduced with respect to random stress processes, crack

propagation laws, rise and fall statistics of the stress process,

residual strengths, expected failure rate and inspection pro-

cedures for the ultimate purpose of evaluating the probability

of aircraft failure. Obviously, the resulting probability of

failure depends on these analytical models. Since, however, they

are contructed on the basis of the current (and therefore not

necessarily perfect) state of the engineering knowledge on the

subjects involved with the due consideration for analytical and

numerical tractability, it is highly desirable to investigate

the sensitivity of the probability of failure to these models.

Such sensitivity studies could be performed in terms of numerical

examples for those items for which competing or alternative

models are proposed. For example, significant difference in the

probability of failure may result depending on whether one choses

(a) a single Gaussian or a composite Gaussian for a com-

ponent process (such as stress process due to clear air

turbulence),

(b) a Gaussian process or a non-Gaussian process for maneuver,

(c) counting method I or method II in conjunction with rise

and fall statistics (see Fig. 17),
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(d) slow crack growth design or fail-safe design,

(e) clumpsize equal to one or any other value,

(f) crack-initiation model or pre-existing crack model,

(g) controlled maneuver or uncontrolled maneuver,

(h) perform inspection or do not perform inspection

(i) perform proof load test or do not perform proof load

test.

Although the computer programs are written so that all these

items except for item (e) can be dealt with, the sensitivity

studies are actually performed only on items (d), (f), (g), (h)

and (i) and the results are summarized in terms of graphical

comparisons (see Sec. XI). Such results are highly useful in

numerically assessing the significance of various models des-

cribed above.

2. Parameter Sensitivity

After the decision is made to choose a particular model

among the alternatives proposed for each of the items indicated

above, it is not unusual to face the uncertainties of statistical

and other origins under which the values are to be assigned to

the parameters of the model. Then, the sensitivity studies are

again desirable with respect to these parameters for the purpose

of identifying more important parameters in terms of their

contributions to the probability of failure.

Writing these parameters as XI, X2 . . . . . . ., X , the probability

n
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of failure P can formally be written as a function of X1, X2 ,

..... , Xn once the analytical models to be used are decided upon;

P = P(XI, X2, ..... , X ) (70)

In reality, the dependence of P on the parameters is obviously

very complex as seen from the analysis developed in the pre-

ceding sections.

Treating the uncertainties associated with these parameters

as if they were all of statistical origin (or treating 2i' X21 ...

X as random variables), the sensitivity of the probability ofn

failure to each of these parameters is evaluated with the first

order and second moment approach. Within the framework of this

approach, the most reliable value of a parameter Xi is treated

as its expected value and written as Xi, whereas its uncertainty

is expressed in terms of coefficient of variation V X ax Xi
1 1

with G,, being standard deviation of X.. The expected value

Pand coefficient of variation VP of P are then obtained from

P =P(XI X . . . . . , X ) (71)
2n

n
VV2 a 2 V2 (72)

P i=li Xi

where a. is referred to as sensitivity index and is given by
1
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S=(73)
i

where partial derivatives are evaluated at X. = X. (i = 1, 2,...,1 1

n). If P and Vp are interpreted as representing the most reliable

value of P and its uncertainty respectively, the sensitivity

index a. indicates the contribution of the uncertainty associ-
1

ated with parameter X. to the uncertainty of P through Eq. 72.1

Dealing with a transport aircraft, twenty five (25) para-

meters are investigated for the sensitivity analysis and are

listed in Table - 5; Table 3 also shows their most reliable

values as expected values and corresponding sensitivity indices

squared (Wt) for crack initiation model under slow crack growth

design, Table 4 for crack initiation model under fail safe design

and Table 5 for pre-existing crack model under fail safe design.

These results are all obtained under the assumption of five

equally spaced rigorous inspections performed during the service

life of 15,000 hours. As mentioned earlier, the dependence of

P on X1 , X2 . . . . . . ., Xn is highly complex and analytical evalua-

tions of partial derivatives in Eq. 73 are in general not

possible. Therefore, these derivatives are numerically evaluated

in principle as

1- . = ={ 1 2( i 1n,... Xi+1xi X 2 )-P(XI, 2,...,Xi, ... ,n )}/AX.
i 1 (i = 1, 2, ... , n) (74)
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The procedure involved in such numerical evaluation is illust-

rated in Figure 34 dealing with a0 , the first parameter in

Table 2 as an example.
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X. Significance of Full-Scale Test

Fatigue testing under loading sequences representative of

expected operational conditions obviously provides realistic

life estimates. These estimates are, however, usually obtained

from full-scale tests involving a single or at most two proto-

types, since the cost is prohibitive even for a small number

of replications. This subsection therefore attempts to inves-

tigate the significance of such full-scale testing from the

view point of aircraft reliability estimation. In this respect,

the analysis recently developed in Ref. 50 is closely followed

where the time to first failure tl, is related to a reliability

figure on the basis of the result of full-scale testing without,

however, considering the effect of inspections.

Although the full-scale testing is performed usually only

on a single or at most two prototypes as just mentioned,

consider for the purpose of theoretical development that n

such prototypes are tested with observed lives (times to failure)

tol, t 2 , .. .', t on. These observations constitute a sample of

size n taken from the density function W(t ) of the time1 0

to failure to of individual aircraft (or structural components).

Since, as will be seen below, this sample is needed to estimate

a measure of location of the distribution of to, any density

function that provides a reasonable fit to this sample at

a central range of distribution may be assumed for W(to). For
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convenience, however, the two parameter Weibull distribution

with the density function given in Eq. 49 is assumed for to*

The time to first failure t in a fleet of size m is then

interpreted as the smallest among the sample of size m taken

from the Weibull distribution with the density W(tO) given in

Eq. 49. Hence, the distribution function of t1 is in general

one of the extreme value distributions and in this case it is

again a Weibull by virtue of stability of the extreme value

distribution. In fact, it can be shown to be

W((t exp{-(t/)} (75)118

where, however, the scale parameter 1 is given by 1 =/m

while the shape parameter remains to be a (a and 6 are shape and

scale parameter of the Weibull density for to).

Define now the scatter factor S as

S = ý/tI (76)

where ý is the maximum likelihood point estimator of the scale

parameter ý from a sample of size n (tol, to2, . . . .  on).

The point estimator f for n observations toi is given by

A 1 n . 1/a
= [- 1 t ] (77)

ni=lo0
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provided a is known. The distribution function fl(3) can then

be shown to be

n
f ) _n a i ( Yn-1 ( ] d7

fe 1 [()d = -n ] d (78)
F(n) 8

Using Eqs. 75 and 78, one obtains the density function of the

quotient S = ý/t as

f 2 (S) = f fl(St 1 ).W 1 (t 1 )t 1 dt 1  (79)

which after some manipulation becomes

amnn+l S an-1

f2(S) = - a -n+ (80)

By integration, the distribution function of S is obtained as

S n
F2(S) = (m/n)[+ n] (81a)

and this probability is identical to the reliability R that the

time to first failure t1 will be at least equal to the maximum

likelihood estimate defined by Eq. 77 divided by a scatter

factor S;

S n
R= [ ] (81b)

(m/n) + Sa
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The values of a representative for different structural

materials and for aircraft of fighter and transport type are

summarized in Ref. 50 on the basis of existing data and listed

here in Table 6. The values of the scatter factor associated

with reliability levels R = 0.5, 0.9 and 0.99 are evaluated

from Eq. 81b for more conservative values of a = 2, 3, 4 and 5.

The results are shown in Tables 7 - 9 for m = 3, 25, 100, 250

and 1,000 and m = 1 and 3. It is important to observe from

Tables 7 - 9 that practically no change materializes by

increasing n from 1 to 3. This fact is highly significant, as

emphasized in Ref. 50, since it means that the full-scale

testing performed on two or three prototypes offers practically

no advantage over the testing of a single prototype as far as

the reliability estimation with respect to the time to first

failure is concerned. It is also important to realize that the

values of the scatter factor are within a practical range even

at a reliability level of .99 particularly when the fleet size

is not too large. If the minimum life T, is introduced in the

Weibull distribution as indicated in Eq. 50, it can be shown

(Ref. 50) that the values of the scatter factor will be reduced

significantly even for T* as small as 0.05f.

The results described above provide the theoretical bases

on which a realistic method of reliability demonstration can be

established as an enforcable part of the certification and

procurement procedure. Even more significant is the potential
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of this approach in evaluating the possible amount of reduc-

tion in the scatter factor when the aircraft are subjected to

the periodic inspection as described in Sec. VII, although the

approach must in essence use the crack initiation model because

of its mathematical development using the Weibull distribution.

- 57 -



XI. Numerical Examples and Discussion

Numerical examples are carried out for long-life aircraft

such as transports and bombers using the crack initiation model

under slow crack growth and fail safe design and also using the

pre-existing crack model under fail safe design. With the

crack initiation model, a two-parameter Weibull density is used

for the time to crack initiation while the corresponding (com-

patible) distribution is used with the pre--existing crack model.

Tables 3 - 5 show the parameter values used for the numerical

computation in the column under "Mean Value." Some of these

values are assigned on the basis of experimental evidence,

others are chosen to be consistent with conventional static

design practice and still, others are on the basis of engineering

judgement. For example, the values of material constants are

consistent with those of structural aluminum, the parameters

associated with the detectable crack size are within the range

found in available experiments, and the power b in the crack

propagation law is assumed to be 4.0 because of the availability

of the experimental data under random loading only for b = 4.

The parameters involved in the formulation of stress

processes are more difficult to estimate since not much data

are available in terms of stress history. The usual load data

in terms of g cannot directly be used without specific knowledge of

the structural system under consideration. The coefficient A
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appearing in the rise and fall statistics is obtained from

the result of simulation with b = 4 and counting method II

(Fig. 17); A = A1 4 = A2 4 = 115 for Sgc(t) (CAT) and SgT(t)

(thunderstorm) assuming that they have narrow-band characteris-

tics equivalent to those simulated processes with 8c = 0.6 - 0.8

(see Fig. 14 and 19), while A = A34 = 80 for S m(t) (maneuver)

from the solid curve in Fig. 25 assuming that symmetric excee-

dance curves apply to transports (Fig. 2). The number of stress

cycles per hour such as N and N represents the expected rateg m

of zero upcrossing since the second counting method is used in

this study. Therefore, the evaluation of these values is obviously

possible when the spectral density functions of the underlying

stress processes are specified. Because of the fact that the

spectral densities of "stress" processes are usually not well

specified, N and Nm are treated as independent parameters. It

is emphasized that this does not invalidate either the inter-

pretation or the result of the simulation to evaluate the

coefficient A since one can always adjust the time scale so

that a desired value of Ng or Nm is obtained without altering

the value of A.

The choice of p1 = 0.495, P 2 = 0.005 and P 3 = 0.5 is made

because such a choice appears to represent one of realistic

loading conditions. Also, the values of aCI' GC2 and aC3 as

indicated in the tables are judged to be reasonable.

Under the loading and other conditions corresponding to
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these parameter values specified in Table 4, a crack of size

0.04", once initiated, grows under fail safe design as shown

in Fig. 35 where the corresponding residual strength R(tn) and

failure rate h(t n) are also plotted. Note that the crack be-

comes unstable after 4,000 - 5,000 flight hours.

Figs. 36 - 39 illustrate the effect of some of the model

sensitivity mentioned in Sec. IX. The probabilities of failure

are all in terms of the probability of first failure in a fleet

of size 50 for service life of 15,000 flight hours. Therefore,

the probability of failure of any aircraft is in approximation

one fiftieth of the value indicated.

Figs. 36 (a) and (c) show the difference between the pro-

bability of first failure resulting from the pre-existing model

and that resulting from the crack initiation model both under

fail safe design- The pre-existing model and the crack initia-

tion model are labeled as G(ao) method and W(to) method for

simplicity. Figs. 36 (b) and (d) show the same difference under

the slow crack growth model. When no inspection is performed,

the pre-existing crack model and the crack initiation model

produce practically identical probability of first failure under

both fail safe and slow crack growth designs. The reason is as

follows; when G(ao) and W(to) are compatible, the reduction in

the ultimate strength during the time period to in the pre-

existing model is negligibly small, at least for the numerical

examples considered, compared with the ultimate strength Ro
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which remains constant until the end of the same time period

under the crack initiation model. Fig. 36 also illustrates

the effect of rigorous inspection: In all cases, the proba-

bility of first failure decreases as the number N of rigorous

inspections increases. However, no further improvement is

expected for N larger than 14. So long as N < 14, the improve-

ments achieved by the same number of rigorous inspections are

more significant for the pre-existing crack model than for the

crack initiation model under both fail safe and slow crack

growth design. This is due to the fact that, as the pre-existing

crack a grows, it may be detected possibly at the early stage

of growth with a size much smaller than a* (= 0.04" in this

example) and the cracked structural component replaced thus pro-

viding better chances for containing the crack size less than

a* throughout the life, while in the crack initiation model the

cracks are found only after they are initiated with the size of

a*. Comparison between Figs. 36 (a) and (b) and between (c)

and (d) show that the fail safe design produces safer aircraft

with both pre-existing crack model and crack initiation model

at least for this numerical example. It is important to note

that all the curves in Fig. 36, in particular, the curve with

no inspection, show faster rates of increases in probability

of failure after about 4,000 - 5,000 flight hours and that this

is the range at which a(tn) start to increase significantly

as mentioned previously with respect to Fig. 35. The same
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trend is observed in Figs. 37 - 41 that will follow. The

exceptions are those under the favorable effect of proof load

test in Fig. 39.

Figs. 37 and 38 indicate the effect of cursory inspections

under the various assumptions of the crack size a1 ' that can

be detected by them. These results are for the pre-existing

crack model under fail safe design. Fig. 37 shows that even

when a1 ' is as small as 0.1", the improvements on the reliabi-

lity achieved by the cursory inspections are insignificant as

long as the number of cursory inspections is small. Each dia-

gram represents a combination of different numbers of rigorous

and cursory inspections. As shown in Fig. 38, however, signifi-

cant improvements can be achieved by increasing the number of

cursory inspections considerably. Even then, however, the

detectable size must be as small as 0.1".

The results given in Fig. 39 is significant since they

indicate generally favorable effect of proof load tests (under

both fail safe and slow crack growth designs with the pre-exist-

ing model) particularly when a reasonable number of rigorous

inspections are performed; for example, 5 inspections in Figures

39 (b) and (d). It should be noted that there apprears to be

a critical truncation value aop such that proof load tests

producing a truncation less than such a critical value would

significantly improve the reliability. Campare, for example,

the probability of first failure for 15,000 flight hours for
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a 0.030 with that for a = 0.025 in both Figs. 30 (a)
op op

and (c).

The parametric sensitivity studies are performed on all

twenty-five parameters listed in Tables 3 - 5 using the method

described in subsection 9.2 and following the procedures illus-

trated in Fig. 34. In fact, Fig. 40 (d) shows how the basic

probability values made use of in Fig. 34 for the computation

of sensitivity index a. are obtained. Other diagrams in Fig.i

40 show corresponding probability values for the parameters

(AKb)I/b and g (stress equivalent of one g load) both for Table
TH

5 and a for Table 4. The resulting values of a 2 are listed
0 i

under the column U
2 in Tables 3 - 5 (all for the case of five
i

rigorous inspections). In all cases, the parameter g is most
b 1/b

important, followed by (AK ) . Other more significantTH

parameters are found to be P', a or a*, Z , etc. For

fail safe design, p and E are also important.
0

Fig. 41 indicates the probability of first failure when no
"--5 1/b

threshold is considered for (AK) with log(da/dn) being
b 1/b

related to log(AK ) through a straight line (CD in Fig. 8).

Figs. 42 and 43 give the overall effect of the number

of inspections for the pre-existing crack model and the crack

initiation model respectively.

For fighters, numerical examples are given with the

crack initiation model. In one case, structural details made

of steel are considered under slow crack growth design.
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The parameters listed in Table 3 are used for numerical computa-

tion except for g = 15.5 ksi, P = 1.0, A = 12, p = 210 ksi,

S1/b3 9 34 o
(AK ) = 7.0 ksi,/in and c = 3 x 10 . Also, in this caseTH

asymmetric processes constructed from single Gaussian processes

as introduced in Eq. 30 are used for the stress processes Sm(t)

for maneuver with r = 0.3 (this is why A = 12, see Fig. 25),
34

a= U = between 1.55 g and 0.5 g. The value a 1.55 g iss p p

consistent with the exceedance curves given in Fig. 3 and appears

to represent the upper bound for a , while the value a = 0.5 g
p P

is judged to represent less strenuous maneuver conditions.

The results are shown in Figs. 44 and 45. Fig. 44 shows the

effect of the number of rigorous inspections while Fig. 45

the effect of a . Figs. 46 - 48 indicate similar resultsS

for structural components made of aluminum. The parameters

are identical to those listed in Table 3 and 4, depending on

whether slow crack growth design or fail safe design is con-

sidered. The exceptions are g = 4.2 ksi, P = 1.0 and A =3 34

12. The same asymmetric stress processes are used; r = 0.3

(and therefore A = 12) and a = a = 0.5 g - 1.55 g. Fig.
34 S p

46 shows the effect of the number of rigorous inspections under

fail safe design while Figs. 47 and 48 indicate the effect

of a under fail safe design and slow crack growth designS

respectively. It is pointed out, however, that the results

indicated in Figs. 45, 47 and 48 do not really represent the

effect of a since the identical Weibull density has been usedS

for the time t to crack initiation irrespective of a values0 S

while in reality the time t obviously depends on a
0 S
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XII. Conclusion and Recommendation for Further Study

The probability of aircraft failure Pf may be considered

as function of a large number of variables. For example,

Pf Pf(M, F, D, G, S, T, I, P, A)

where

M = Material selection

F = Fabrication

D = Design practice

G Geometric configuration

S = Mission spectra

T = Full scale and other testing

I = Inspection procedures

P = Proof test

A = Analysis methods

In the present study, a major effort has been made to

incorporate into the reliability evaluation scheme, the effect

of material selection, geometrical configuration (fail safe or

slow crack), mission spectra, full scale testing, inspection pro-

cedures, and proof load test. The effect of design practice

implicitly appears, for example, through the stress equivalent

of one g load as the design usually equates the ultimate strength

to the limit load in terms of g multiplied by a safety factor.

Also, the analysis method, which determines the accuracy of the
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(calculated) stress equivalent of one g load as well as of

(calclulated) strsss processes, influences the reliability.

Although their roles are implicit in the analysis presented here,

these are important items from the view point of reliability

evaluation since the probability of failure has been found

to be extremely sensitive to the parameter g0 .

Although this study has provided, it is hoped, an adequate

analytical framework for the current effort toward implementation

of the reliability-based design criteria for USAF aircraft,

there are a number of other items on which further studies

are recommended. They include the establishment of

(1) effect of inspection procedures on the scatter factor

(2) more reliable crack propagation law, particularly values of
Si1/b

(AKb TH and P', under random loading

(3) more reliable probability values for detecting cracks

of various size by NDI techniques

(4) more realistic model for residual strength for both

slow crack growth and fail safe design

(5) range of the parameter values associated with stress

processes from existing data depending on loading conditions

and structural details, particularly for fighters under

maneuver loading

(6) more explicit dependence of the distribution of time

to failure on the mission spectra and the crack size at

the time of crack initiation with respect to the crack
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initiation model

(7) more reliable distribution functions for initial

crack size with respect to the pre-existing crack model

(8) effect of having a large number of critical locations

on the reliability value of an aircraft

(9) optimum number of periodic inspections on the basis

of cost-effectiveness consideration.

Although all these items are important, the items (1) - (5), when

accomplished, will have immediate impact on the implementation

of the reliability-based design and procurement procedures.
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TABLE 1. IRREGULARITY RATIO R

Theory Simulation Error(%)

0 .7454 .7503 .65

.25 .8476 .8485 .10

.50 .9371 .9364 .07

.75 .9868 .9884 .16

.80 .9919 .9898 .21

.90 .9982 .9984 .02
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TABLE 2. EXPECTED VALUE OF b-TH POWER OF RISE AND FALL

(a) b = 1

ýc 0 0.25 0.5 0.75 0.8 0.9
Simulation 1.87 2.12 2.35 2.46 2.47 2.50
Ref. 29(Exact) 1.87 2.11 2.35 2.48 - --

Ref. 30 - - - -. - -

(b) b = 4

ýc 0 0.25 0.5 0.75 0.8 0.9
Simulation 48.2 77.0 108 121 125 126
Ref. 29 43.6 63.1 81.3 133 - --

Ref. 30 ..- - 127 128
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TABLE 3. SENSITIVITY ANALYSIS (SLOW CRACK GROWTH)
2

Parameter Mean Value a . (N=5)
1

1. a : Crack size initiated at t 0.04 in 50.21
o o

2. c: Material constant 3.0 x 10-7 22.96

3. Ng: Number of gust load cycles per hour 600 0.069

4. N : Number of maneuver load cycles 60 0.156
m per hour

5. N : Number of G-A-G load cycles per hour 0.5 4.866
z

6. A =A 115 8.216
14 24

7. A 80 1.602
34

8. P 3 : Fraction of flight hours in maneuver 0.5 0.022

9. a C: Intensity of CAT 0.07g ksi 111.89

10. a : Intensity of thunderstorm 0.18g ksi 3.887C2

11. aC3: Intensity of maneuver 0.10g ksi 12.75

12. Z4: Average of fourth power of G-A-G (1.5 g) 4  102.35
cycles Z

13. g: Gravitational acceleration 10 ksi 509.98

14. K : Critical value of stress intensity 60 ksiVi-n 0.0750
c factor

15. V : COV of ultimate strength 0.056 0.00034
0

16. p : Ultimate strength 57 ksi 0.001120

17. a: Shape parameter 4.0 18.84

18. ý: Scale parameter 30,000 hrs 15.89

19. U1 : Probability of inspecting cracked 1.0 60.99
details

20. a : Maximum undetectable crack size 0.02 in 0.2511

21. a 2 : Minimum crack definitely detectable 0.3 in 0.833

22. m: Parameter appearing in expression 0.125 2.973
for U2 (a)

23. (AKb)TH ib: Threshold value 1.5 ksi/in 240.79

24. X': Slope of crack propagation law 10.0 127.88

25. X: Slope of crack propagation law 2.5 41.80
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TABLE 4. SENSITIVITY ANALYSIS (FAIL SAFE)

2
Parameter Mean Value a. (N=5)1

1. a : Crack size initiated at t 0.04 in 76.69
o 0

2. c: Material constant 3.0 x 10 11.38

3. N : Number of gust load cycles per hour 600 1.291g

4. N : Number of maneuver load cycles 60 0.252
m per hour

5. N : Number of G-A-G load cycles per 0.5 5.257
z hour

6. A =A 115 7.409
14 24

7. A 80 0.448
34

8. P : Fraction of flight hours in maneuver 0.5 0.443
3

9. aCI: Intensity of CAT 0.07g ksi 151.84

10. aC2: Intensity of thunderstorm 0.18g ksi 49.42

11. a : Intensity of maneuver 0.10g ksi 10.21
C3

12. Z Average of fourth power of G-A-G (1.5 g) 86.85
cycles Z

13. g: Gravitational acceleration 10 ksi 505.58

14. ý: Residual strength ratio 0.43 95.96

15. V 0 COV of ultimate strength 0.056 0.2200

16. p Ultimate strength 57 ksi 98.97
0

17. a: Shape parameter 4.0 19.17

18. 3: Scale parameter 30,000 hrs 15.95

19. U Probability of inspecting cracked 1.0 101.18
1 details

20. a1 : Maximum undetectable crack size 0.02 in 0.224

21. a : Mimimum crack size definitely 0.3 in 1.060
2 detectable

22. m: Parameter appearing in expression 0.125 3.151
for U2 (a)

23. (AKb)THi : Threshold value 1.5 ksiv/in 227.70
TH

24. X': Slope of crack propagation law 10.0 52.54

25. X: Slope of crack propagation law 2.5 35.01
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TABLE 5. SENSITIVITY ANALYSIS (FAIL SAFE)

Parameter Mean Value O2 (N=5)1

1. a*: Upper bound of G(a ) 0.04 in 129.130

2. c: Material constant 3.0 x 10-7 20.40

3. N : Number of gust load cycles per hour 600 1.208g

4. N : Number of maneuver load cycles per hour 60 0.420
m

5. N : Number of G-A-G load cycles per hour 0.5 15.26z

6. A14 =A24 115 15.89

7. A34 80 0.911

8. P 3: Fraction of flight hours in maneuver 0.5 0.098

9. acl: Intensity of CAT 0.07g ksi 222.45

10. ac2: Intensity of thunderstorm 0.18g ksi 81.00

11. 3: Intensity of maneuver 0.1Og ksi 21.18

12. Z4: Average of fourth power of G-A-G (l.5g)4 180.22
cycles Z

13. g: Gravitational acceleration 10 ksi 1322.31

14. E: Residual strength ratio 0.43 93.13

15. V : COV of ultimate strength 0.056 2.3400

16. 0: Ultimate strength 57 ksi 114.22

17. a: Shape parameter 4.0 35.59

18. ,: Scale parameter 30,000 hrs 15.37

19. Ul: Probability of inspecting cracked 1.0 129.13
details

20. a1 : Maximum undetectable crack size 0.02 in 0.457

21. a 2 : Minimum crack size definitely detectable 0.3 in 2.002

22. m: Parameter appearing in expression for 0.125 8.242
U2 (a)

23. (AKIb)l/b: Threshold value 1.5 ksi /in 532.11"TH
24. X': Slope of crack propagation law 10.0 152.73

25. X: Slope of crack propagation law 2.5 54.56
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TABLE 6. REPRESENTATIVE VALUES OF SHAPE PARAMETER

(a) Between 10 and 20 percentile

Material Fighter Transport

Aluminum 4.5 3.5

Titanium 3.0 2.5

Steel (100-200 ksi) 3.5 3.0

Steel (200-300 ksi) 2.5 2.0

(b) In the median range

Material Fighter Transport

Aluminum 8.0 6.0

Titanium 6.5 4.0

Steel (100-200 ksi) 7.0 5.0

Steel (200-300 ksi) 5.0 3.5
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TABLE 7. SCATTER FACTORS S FOR

RELIABILITY LEVEL R = 0.5

(a) n=1

m"-O 2 3 4 5

3 1.7 1.4 1.3 1.3

25 5.0 2.9 2.2 1.9

100 10.0 4.6 3.2 2.5

250 15.8 6.3 4.0 3.0

1000 31.6 10.0 5.6 4.0

(b) n= 3

2 3 4 5

3 1.9 1.5 1.4 1.3

25 5.6 3.2 2.3 2.0

100 11.3 5.0 3.4 2.6

250 18.0 6.9 4.2 3.2

1000 36.8 10.9 5.9 4.2
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TABLE 8. SCATTER FACTORS S FOR

RELIABILITY LEVEL R = 0.5

(a) n1

m 2 3 4 5

3 5.2 3.0 2.3 1.9

25 15.0 6.1 3.9 3.0

100 30.0 9.7 5.5 3.9

250 47.4 13.1 6.9 4.7

1000 94.9 20.8 9.7 6.2

(b) n= 3

2 3 4 5

3 5.3 3.0 2.3 1.9

25 15.3 6.2 3.9 3.0

100 30.6 9.8 5.6 3.9

250 48.3 13.2 7.0 4.8

1000 97.1 21.0 9.8 6.3
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TABLE 9. SCATTER FACTORS S FOR

RELIABILITY LEVEL R = 0.99

(a) n1

m, 2 3' 4 5

3 17.2 6.7 4.2 3.1

25 49.8 13.5 7.1 4.8

100 99.5 21.5 10.0 6.3

250 157 29.1 12.5 7.6

1000 314 46.3 17.7 10.0

(b) n= 3

m 2 3 4 5

3 17.0 6.7 4.2 3.1

25 50.0 13.5 7.1 4.8

100 99.0 21.5 10.0 6.3

250 160 29.1 12.5 7.6

1000 310 46.3 17.7 10.0
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